麦伟雄副研究员到岗

近日,麦伟雄副研究员完成报到手续,正式入职中山大学数学学院(珠海)。

教育背景:

1.    2012.09——2016.08       澳门大学数学系, 博士

2.    2010.09——2012.08       澳门大学数学系, 硕士

3.    2006.09——2010.06       中山大学信息与计算科学系, 学士

 

研究领域和兴趣:

复分析和调和分析及其在信号处理中的应用

 

论文发表:

1.    P. Dang, W.-X. Mai, T. Qian,Fourier Spectrum Characterizations of Clifford H^p Spaces on R^{m+1}_+ for 1\leq p\leq \infty, arXiv: 1711.02610 [math.CV], 2017.

2.    W.-X. Mai, T. Qian, Rational Approximation in Hardy Spaces on Strips, accepted by Complex Variables and Elliptic Equations, 2017.

3.    W.-X. Mai, T. Qian, Aveiro Method in Reproducing Kernel Hilbert Spaces under Complete Dictionary, Mathematical Methods in the Applied Sciences, vol. 40 (2017), pages: 7240-7254.

4.    L.-M. Zhang, T. Qian, W.-X. Mai, P. Dang, Adaptive Fourier Decomposition Based Dirac Type Time-Frequency Distribution, Mathematical Methods in the Applied Sciences, vol. 40 (2017), pages: 2815-2833.

5.    L. Baratchart, W.-X. Mai, T. Qian, Greedy Algorithms and Rational Approximation in One and Several Variables, In: Bernstein S., Kaehler U., Sabadini I., Sommen F. (eds) Modern Trends in Hypercomplex Analysis. Trends in Mathematics, pp: 19-33.

6.    W.-X. Mai, T. Qian, Rational Approximation of Functions in The Hardy Spaces on Tubes}, arXiv:1604.07597 [math.CV], 2016.

7.    Q.-H. Chen, T. Qian, Y. Li, W.-X. Mai, X.-F. Zhang, Adaptive Fourier Tester for Statistical Estimation, Mathematical Methods in the Applied Sciences, vol. 39 (2016), pages: 3478-3495.

8.    W.-X. Mai, P. Dang, L.-M. Zhang, T. Qian, Consecutive Minimum Phase Expansion of Physically Realizable Signals with Applications, Mathematical Methods in the Applied Sciences, vol. 39 (2016), pages: 62-72.

9.    Q.-H. Chen, W.-X. Mai, L.-M. Zhang, W. Mi, System Identification by Discrete Rational Atoms, Automatica, vol. 56 (2015), pages: 53-59.

10.  Y. Mo, T. Qian, W.-X. Mai, Q.-H. Chen, The AFD Methods to Compute Hilbert Transform}, Applied Mathematics Letters, vol. 45 (2015), pages: 18-24.

11.  L.-M. Zhang, W. Hong, W.-X. Mai, T. Qian, Adaptive Fourier Decomposition, Rational Approximation, Part 2: Software System Design and Development,} International Journal of Wavelets, Multiresolution and Information Processing, vol. 12 (2014) 1461009 (10 pages).