王戈浩

教育背景:

  1. 2009.01—2012.07,英国伯明翰大学基础数学,博士, 论文:Genus Zero Systems For Primitive Groups of Affine Type 
  2. 2007.10—2008.12,英国伯明翰大学基础数学,硕士, 论文:Elementary Number Theory, Group Theory and The Graphs X^{p,q}
  3. 2001.09—2005.07,四川大学数学学院信息与计算科学专业,学士

工作经历:

  1. 2016.09—present,中山大学数学学院(珠海),特聘副研究员
  2. 2015.04—2016.08,北京国际数学研究中心助理研究员, 研究方向:Hurwitz theory, Riemann surface action
  3. 2012.07—2015.03,北京国际数学研究中心博士后,研究方向:Gromov-Witten theory

联系方式:

办公电话:0756-3668372

邮箱:gehao_wang 'at' hotmail.com

学位及授予单位: 
Ph.D in pure mathematics, University of Birmingham
研究领域: 

Moduli space of curves, Matrix models, Mathematical physics

Group theory, Inverse Galois problem, Computational algebra.

学术活动: 
  1. 2015.06,北京国际数学研究中心会议“Workshop on Non-abelian Gauged Linear Sigma Model and Geometric Representation Theory” 邀请报告:Connecting the Kontsevich-Witten and Hodge tau-functions using the GL() operator.
  2. 2013.06,北京国际数学研究中心讨论班报告:From One-Matrix Models to Holomorphic Maps with three branch points.
  3. 2012.12,北京国际数学研究中心讨论班报告:A Review on Hurwitz Tau-function and Kontsevich-Witten Tau-function.
  4. 2012.06,北京国际数学研究中心 “Conference on Symplectic Geometry and Mathematical Physics”.
  5. 2011.07,墨尔本大学 “Geometry and Topology Down Under, A Conference in Honor of Hyam Rubinstein”.
  6. 2011.06,英国奥伯丁大学 “13th Postgraduate Group Theory Conference", 邀请报告标题:The Computation of Braid Orbits and The Hurwitz Space”.
  7. 2010.08,意大利威尼斯夏季学校:“Summer School on Finite Groups and Related Geometrical Structures”.
  8. 2010.06,在伯明翰大学 “The 1st BEAR PG Conference”发表个人报告,报告标题: Parallel Computation of Braid Orbits with GAP and SCSCP.
  9. 2008.12,爱尔兰国立高威大学,“The 3rd de DeBrun Workshop, Algebra, Algorithms, Application”.
科研项目: 

1. Brezin-Gross-Witten矩阵模型的枚举几何和组合学意义,  国家自然科学青年基金项目, 2018/01 - 2020/12,主持。
2. 对单Hurwitz数生成函数Virasoro约束显式表现形式的推导,中山大学高校基本科研业务费青年教师培育项目, 2017/01- 2019/12,主持。

论文发表: 
  1. Shuai Guo, Gehao Wang, Virasoro constraints and polynomial recursion for the linear Hodge integrals, Letters in Mathematical Physics (2017), 107(4), pp 757–791, DOI:10.1007/s11005-016-0923-x. [ arXiv:1608.02077 ]
  2. Xiaobo Liu, Gehao Wang, Connecting the Kontsevich-Witten and Hodge Tau-functions by the GL(∞) operators, Communications in Mathematical Physics (2016), 346(1), 143-190. DOI: 10.1007/s00220-016-2671-2.[ arXiv:1503.05268 ] 
  3. Kay Magaard, Sergey Shpectorov, Gehao Wang, Generating sets of affine groups of low genus, Computational Algebraic and Analytic Geometry, Contemporary Mathematics, vol. 572, Amer. Math. Soc., Providence, RI, 2012, pp. 173-192. DOI: http://dx.doi.org/10.1090/conm/572. [ arXiv:1108.4833 ]