教育经历:
2012.9-2017.6 数学专业理学博士 湖南大学 导师:桂长峰教授
2008.9-2012.6 数学与应用数学理学学士 湖南大学
工作经历:
2017.7-2017.12 特聘副研究员 中山大学数学学院(珠海)
2018.1-2020.6 博士后 中山大学数学学院(珠海) 合作导师:赵育林教授
2020.7-至今 特聘副研究员 中山大学数学学院(珠海)
联系方式:
研究方向:
微分方程、动力系统、生物数学
科研项目:
国家自然科学基金青年项目,空间生态学中若干反应扩散方程模型的定性研究、11901596、2020.1-2022.12、主持
博士后面上资助,若干两物种反应扩散对流模型种群动力学行为的定性研究、2018M643281、2019.1-2020.12、主持
中央高校基本业务费青年培训项目,几类反应扩散方程(组)动力学行为的定性研究 、19lgpy246、2019.1-2021.12、主持
论文发表(接收待发表):
[1]F. Xu, W. Gan, D. Tang*. Global dynamics of a Lotka-Volterra competitive system from river ecology: general boundary conditions. Nonlinearity, 33 (2020), 1528-1541.(JCR:Q1,中科院大类二区)
[2]D. Tang, Y. Chen*. Global dynamics of a Lotka-Volterra competition-diffusion system in advective homogeneous environments. Journal of Differential Equations, 269 (2020), 1465–1483. (JCR:Q1,中科院大类二区TOP)
[3] D. Tang, P. Zhou*. On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity. Journal of Differential Equations, 268 (2020), 1570–1599.(JCR:Q1,中科院大类二区TOP)
[4] L. Ma, D. Tang*. Evolution of dispersal in advective homogeneous environments. Discrete and Continuous Dynamical Systems, 40 (2020), 5815-5830.(JCR:Q1,中科院大类三区)
[5] L. Ma, D. Tang*. Existence and Stability of Stationary States of a Reaction-Diffusion-Advection Model for Two Competing Species, International Journal of Bifurcation and Chaos, 30 (2020), 2050065, 14pp.(JCR:Q2,中科院大类二区)
[6] F. Xu, W. Gan, D. Tang*. Population dynamics and evolution in river ecosystems. Nonlinear Analysis-Real World Applocations, 51 (2020), 92D25.(JCR:Q1,中科院大类二区)
[7] D. Tang*. Dynamical behavior for a lotka-volterra weak competition system in advective homogeneous environment. Discrete and Continuous Dynamical Systems-Series B, 24 (2019), no. 9, 4913-4928.(JCR:Q3,中科院大类三区)
[8] N. Zhu*, D. Tang. Nonexistence of coexisting steady-state solutions of Dirichlet problem for a cross-diffusion model. Mathematical Methods in the Applied Sciences, 42 (2019), no. 1, 346–353. (JCR:Q2,中科院大类三区)
[9] D. Tang, L. Ma*. Existence and uniqueness of a Lotka-Volterra reaction-diffusion model with advection term. Applied Mathematics Letters, 86 (2018), 83–88. (JCR:Q1,中科院大类一区TOP)
[10] D.Tang*, L. Ma. Dynamical behavior of a general reaction-diffusion-advection model for two competing species. Computers & Mathematics with Applications, 75 (2018), 1128-1142.(JCR:Q1,中科院大类二区TOP)
[11] Y. Fang, D. Tang*. Method of sub-super solutions for fractional elliptic equations. Discrete and Continuous Dynamical Systems-Series B, 23 (2018), no. 8, 3153–3165.(JCR:Q3,中科院大类三区)
[12] D. Tang*. Positive solutions to semilinear elliptic equations involving a weighted fractional Laplacian. Mathematical Methods in the Applied Sciences, 40 (2017), no. 7, 2596–2609.(JCR:Q2,中科院大类三区)
[13] D. Tang, Y. Fang*. Regularity and nonexistence of solutions for a system involving the fractional Laplacian. Communications on Pure and Applied Analysis, 14 (2015), no. 6, 2431–2451. (JCR:Q2,中科院大类三区)