Asymptotic profiles of ground states for Choquard equations with combined nonlinearities(II)
2021年11月2日 19:30-21:00
讲座时间 Datetime: 2021年11月2日,星期二,19:30-21:00
地点 Venue: 腾讯会议,875 618 957
报告人 Speaker: 马世旺 教授
单位 Affiliation: 南开大学
报告摘要 Abstract:
We study asymptotic behaviour of positive ground state solutions of the nonlinear Choquard equation
$$
-\Delta v+\varepsilon v=(I_\alpha \ast |u|^{p})|v|^{p-2}v+ |v|^{q-2}v,
\quad {\rm in} \ \mathbb R^N,
\eqno(P_\varepsilon)
$$
where $N\ge 3$ is an integer, $p\in [\frac{N+\alpha}{N}, \frac{N+\alpha}{N-2}]$, $q\in (2,2^*)$ with $2^*=\frac{2N}{N-2}$, and $\varepsilon>0$ is a parameters. We show that as $\varepsilon\to 0$, after {\em a rescaling} the ground state solutions of $(P_\varepsilon)$ converge to a particular solution of some limit equations. We also establish a sharp asymptotic characterisation of such a rescaling.