徐行副教授到岗

发布人:叶海霞

 近日,徐行副教授正式入职中山大学数学学院(珠海)。

徐行个人简历:

教育背景:
2010.09 – 2016.06 University of California, Irvine, 数学系,博士,导师:陆志勤教授
2006.09 – 2010.06 浙江大学,数学系,理学学士

工作经历:
2022.10 – 至今 中山大学数学学院(珠海),副教授
2022.07 – 2022.09 University of California, San Diego, 数学系,Visiting Scholar (访问学者)
2019.07 – 2022.06 University of California, San Diego, 数学系,SEW Assistant Professor (博士后),导师:Peter Ebenfelt教授和肖鸣教授
2016.07 – 2019.06 Johns Hopkins University, 数学系,J. J. Sylvester Assistant Professor (博士后),导师:Bernard Shiffman教授

联系方式:
邮箱 xuhang9@mail.sysu.edu.cn

研究领域:多复变、复几何与CR几何

学术论文:
1.    Asymptotic expansion of the Bergman kernel via perturbation of the Bargmann-Fock model (with H. Hezari, C. Kelleher, and S. Seto), J. Geom. Anal. 26(4), 2602-2638 (2016). 
2.    Off-diagonal asymptotic properties on Bergman kernels associated to analytic Kahler potentials (with H. Hezari and Z. Lu), Int. Math. Res. Not. 8, 2241–2286 (2018).
3.    On instability of the Nikodym maximal function bounds over Riemannian manifolds (with C. Sogge and Y. Xi), J. Geom. Anal. 28(3), 2886–2901 (2018).
4.    Analysis of the Laplacian on the moduli space of polarized Calabi-Yau manifolds (with Z. Lu), Advances in complex geometry, 179–202, Contemp. Math. 735, Amer. Math. Soc. (2019)
5.    Asymptotic properties of Bergman kernels for potentials with Gevrey regularity, arXiv: 1808.02769.
6.    Quantitative upper bounds for Bergman kernels associated to smooth Kahler potentials (with H. Hezari), Math. Research Letters. 27(3), 743–787 (2020).
7.    Upper bounds for eigenvalues of conformal Laplacian on spheres (with Y. Sire), to appear in Commun. Contemp. Math.
8.    On a property of Bergman kernels when the Kahler potential is analytic (with Hamid Hezari), Pacific J. Math. 313(2), 413–432 (2021).
9.    Algebraicity of the Bergman kernel (with Peter Ebenfelt and Ming Xiao), submitted, arXiv: 2007.00234.
10.    The Dirichlet principle for the complex k-Hessian functional (with Yi Wang), to appear in Comm. Anal. Geom.
11.    On the classification of normal Stein spaces and finite ball quotients with Bergman-Einstein metrics (with Peter Ebenfelt and Ming Xiao), Int. Math. Res. Not. 19, 15240--15270 (2022).
12.    Algebraic Bergman kernels and finite type domains in C^2 (with Peter Ebenfelt and Ming Xiao), to appear in Indiana Univ. Math. J.
13.    Kahler-Einstein metrics and obstruction flatness of circle bundles (with Peter Ebenfelt and Ming Xiao), submitted, arXiv: 2208.13367.

学术报告:
1.    Bergman kernels in microlocal analysis and mathematical physics, CIRM, Luminy, France, November 2022.
2.    Virtual East-West SCV seminar (online), October 2021.
3.    Mini-course on the Bergman kernel (online), Zhongnan University, China, September 2021.
4.    AMS Western Sectional Meeting (online), May 2021.
5.    ICCM Geometry Seminar (online), Tsinghua University, China, September 2020.
6.    AMS Western Sectional Meeting, UC Riverside, U.S., November 2019.
7.    Analysis Seminar, UC San Diego, U.S., May 2019.
8.    Differential Geometry Seminar, Kansas University, U.S., March 2019.
9.    Differential Geometry Seminar, Shanghai Jiaotong University, China, January 2019.