张海樟教授到岗

发布人:网站管理员

  近日,人力资源管理处完成审批,张海樟教授正式调入中山大学数学学院(珠海)。

  张海樟教授简历:

教育背景:

2006/08-2009/05,美国Syracuse大学, 数学系, 博士

2003/09-2006/07,中国科学院数学与系统科学研究院,数学所, 硕士

1999/09-2003/07,北京师范大学, 数学系, 学士

工作经历:

2010/06-至今,中山大学,教授、博导

2009/06-2010/05, 美国密西根大学,博士后

2015/11-2016/07,香港科技大学,访问学者

联系方式:

邮箱:zhhaizh2@mail.sysu.edu.cn 

个人主页:http://www.scholat.com/haizhangzhang

研究领域: 

应用调和分析、学习理论、函数逼近

主讲课程: 

数学分析、傅里叶分析

科研项目: 

1、国家自然科学基金面上项目,11971490 , 学习理论的前沿数学问题及应用,2020-2023,主持

2、国家自然科学基金面上项目,11571377 , 再生核的若干关键数学问题及其在机器学习中的应用,2016-2019,主持

3、国家自然科学基金优秀青年基金,11222103 , 应用与计算调和分析,2013-2015,主持

4、国家自然科学基金青年基金,11101438 , 机器学习中的稀疏逼近与巴拿赫空间方法,2012-2014,主持

5、广东省自然科学基金自由申请项目,2018A030313841 , 机器学习核方法的理论及应用,2018-2021,主持

论文发表: 

[1] L. Chen and H. Zhang, Sharp exponential bounds for the Gaussian regularized Whittaker–Kotelnikov–Shannon sampling series, J. Approximation Theory 245 (2019), 73-82.

[2] L. Chen and H. Zhang, Statistical margin error bounds for L1-norm support vector machines, Neurocomputing 339 (2019), 210-216.

[3] J. Zhang and H. Zhang, Categorization based on similarity and features: the reproducing kernel Banach space (RKBS) approach. New handbook of mathematical psychology. Vol. 2, 322-373, Cambridge Univ. Press, Cambridge, 2018.

[4] L. Chen and H. Zhang, Margin error bounds for support vector machines on reproducing kernel Banach spaces, Neural Computation 29 (2017), 3078-3093.

[5] R. Wang and H. Zhang, Optimal sampling points in reproducing kernel Hilbert spaces, J. Complexity 34 (2016), 129-151.

[6] R. Lin and H. Zhang, Existence of the Bedrosian identity for Fourier multiplier operators, Forum Mathematicum 28 (2016), no. 4, 749-759.

[7] G. Song, H. Zhang and F. J. Hickernell, Reproducing kernel Banach spaces with the l1 norm, Applied and Computational Harmonic Analysis 34 (2013), 96-116.

[8] H. Zhang and J. Zhang, Vector-valued reproducing kernel Banach spaces with applications to multi-task learning, J.Complexity 29 (2013), 195-215.

[9] H. Zhang, Y. Xu and Q. Zhang, Refinement of operator-valued reproducing kernels, J. Machine Learning Research 13 (2012), 91-136.

[10] H. Zhang and J. Zhang, Frames, Riesz bases, and sampling expansions in Banach spaces via semi-inner products, Applied and Computational Harmonic Analysis 31 (2011), 1-25.

[11] H. Zhang, Y. Xu and J. Zhang, Reproducing kernel Banach spaces for machine learning, J. Machine Learning Research 10 (2009), 2741-2775.

[12] Y. Xu and H. Zhang, Refinement of reproducing kernels, J. Machine Learning Research 10 (2009), 107-140.

[13] B. Yu and H. Zhang, The Bedrosian identity and homogeneous semi-convolution equations, J. Integral Equations and Applications 20 (2008), 527-568.

[14] Y. Xu and H. Zhang, Refinable kernels, J. Machine Learning Research 8 (2007), 2083-2120.

[15] C. A. Micchelli, Y. Xu and H. Zhang, Universal kernels, J. Machine Learning Research 7 (2006), 2651-2667.