张植栋副教授到岗

发布人:网站管理员

近日,张植栋副教授完成报到手续,正式入职中山大学数学学院(珠海)。

张植栋副教授简历:

教育背景:

2012.08-2017.07  德克萨斯农工大学 数学 理学博士

2008.09-2012.07  中国科学技术大学 数学与应用数学 理学学士

 

工作经历:

2020.08-        中山大学数学学院(珠海) 副教授

2017.08-2020.08 赫尔辛基大学 博士后

 

联系方式:

zhangzhidong@mail.sysu.edu.cn

 

研究领域:

反问题(Inverse problems)

 

报告及会议:

Mar 2015, Mini-symposium talk, Texas PDE Conference, University of Houston, USA.

Aug 2015, Mini-symposium talk, The International Conference on Inverse Problems, Imaging and Applications, Zhejiang University, China.

Aug 2015, Mini-symposium talk, The 8-th International Congress on Industrial and Applied Mathematics (ICIAM), Beijing, China.

Aug 2016, Mini-symposium talk, Inverse problems and optimal control conference, Wuhan University, China.

May 2017, Mini-symposium talk, Applied Inverse Problems Conference (AIP2017), Zhejiang University, China.

Dec 2017, Mini-symposium talk, Inverse day 2017, University of Oulu, Finland.

Aug 2018, Mini-symposium talk, The 9th International Conference on Inverse Problems and Related Topics (ICIP2018), National University of Singapore, Singapore.

Jun 2019, Mini-symposium talk, The 12th International Conference on Large-Scale Scientific Computations (LSSC'19), Bulgaria.

Jul 2019, Mini-symposium talk, Applied Inverse Problems Conference (AIP2019), Grenoble Alps University, France.

Sep 2019, Mini-symposium talk, 5th International Symposium on Inverse Problems, Design and Optimization (IPDO2019), Hebei University of Technology, China.

 

论文发表:

[1] Shubin Fu and Zhidong Zhang. Recovery of the time-dependent source term in the stochastic fractional diffusion equation with heterogeneous medium. arXiv preprint arXiv:2004.03634, 2020.

[2] Zhiyuan Li and Zhidong Zhang. Unique determination of fractional order and source term in a fractional diffusion equation from sparse boundary data. arXiv preprint arXiv:2003.10927, 2020.

[3] Tapio Helin, Matti Lassas, Lauri Ylinen, and Zhidong Zhang. Inverse problems for heat equation and space-time fractional diffusion equation with one measurement. J. Differential Equations, 269(9):7498--7528, 2020. doi:10.1016/j.jde.2020.05.022.

[4] Pingping Niu, Tapio Helin, and Zhidong Zhang. An inverse random source problem in a stochastic fractional diffusion equation. Inverse Problems, 36(4):045002, 2020. doi:10.1088/1361-6420/ab532c.

[5]William Rundell and Zhidong Zhang. On the Identification of Source Term in the Heat Equation from Sparse Data. SIAM J. Math. Anal., 52(2):1526--1548, 2020. doi:10.1137/19M1279915.

[6]Chan Liu, Jin Wen, and Zhidong Zhang. Reconstruction of the time-dependent source term in a stochastic fractional diffusion equation. arXiv preprint arXiv:1911.00304, 2019. Accepted by Inverse Probl. Imaging.

[7] William Rundell and Zhidong Zhang. Recovering an unknown source in a fractional diffusion problem. J. Comput. Phys., 368:299--314, 2018. doi:10.1016/j.jcp.2018.04.046.

[8] Yikan Liu and Zhidong Zhang. Reconstruction of the temporal component in the source term of a (time-fractional) diffusion equation. J. Phys. A, 50(30):305203, 27, 2017. doi:10.1088/1751-8121/aa763a.

[9] William Rundell and Zhidong Zhang. Fractional diffusion: recovering the distributed fractional derivative from overposed data. Inverse Problems}, 33(3):035008, 27, 2017. (Highlights of 2017)  doi:10.1088/1361-6420/aa573e.

[10] Zhidong Zhang. An undetermined time-dependent coefficient in a fractional diffusion equation. Inverse Probl. Imaging, 11(5):875--900, 2017. doi:10.3934/ipi.2017041.

[11] Zhidong Zhang and Zhi Zhou. Recovering the potential term in a fractional diffusion equation. IMA J. Appl. Math., 82(3):579--600, 2017. doi:10.1093/imamat/hxx004.

[12] Zhidong Zhang. An undetermined coefficient problem for a fractional diffusion equation. Inverse Problems, 32(1):015011, 21, 2016. doi:10.1088/0266-5611/32/1/015011.