动力系统与微分方程系列学术报告(五):The number of limit cycles bifurcating from the period annulus of quasi-homogeneous Hamiltonian systems at any order

星期二, 2020/11/17 - 从 16:30 到 18:00

稿件来源:肖冬梅 教授 发布人:网站管理员

讲座时间 Datetime: 

星期二, 2020/11/17 - 从 16:30 到 18:00

地点 Venue: 

腾讯会议 657 764 364

报告人 Speaker: 

肖冬梅 教授

单位 Affiliation: 

上海交通大学

报告摘要 Abstract: 

In this talk, we will introduce a bound on the number of limit cycles bifurcating from the period annulus of quasi-homogeneous Hamiltonian systems at any order of Melnikov functions. The explicit expression of this bound is given in terms of $(n,k,s_1,s_2)$, where $n$ is the degree of perturbation polynomials, $k$ is the order of the first nonzero higher order Melnikov function, and $(s_1,s_2)$ is the weight exponent of quasi-homogeneous Hamiltonian with center. This is based on a joint work with Jean-Pierre Franciose and Hongjin He.