教育经历:
2012.9-2017.6 数学专业理学博士 湖南大学 导师:桂长峰教授
2008.9-2012.6 数学与应用数学理学学士 湖南大学
工作经历:
2017.7-2017.12 特聘副研究员 中山大学数学学院(珠海)
2018.1-2020.6 博士后 中山大学数学学院(珠海) 合作导师:赵育林教授
2020.7-2021.9 特聘副研究员 中山大学数学学院(珠海)
2021.10至今 副教授 中山大学数学学院(珠海)
联系方式:
邮箱:tangd7@mail.sysu.edu.cn
研究方向:
微分方程、动力系统、生物数学
科研项目:
国家自然科学基金青年项目,空间生态学中若干反应扩散方程模型的定性研、2020.1-2022.12、主持
博士后面上资助,若干两物种反应扩散对流模型种群动力学行为的定性研究、2019.1-2020.12、主持
中央高校基本业务费青年培训项目,几类反应扩散方程(组)动力学行为的定性研究 、2019.1-2021.12、主持
广州市科技计划项目 ,具有空间结构的反应扩散模型解的长时间动力学性态、2021.4.1-2023.3.31、主持
广东省自然科学基金面上项目,若干反应扩散方程模型的对流机制,2023.1.1-2025.12.31、主持
论文发表:
1.Lam King-Yeung, Tang De, Wang Zhi-An*. Existence of positive steady-state solutions to the SKT competition system with cross-diffusion. SIAM Journal on Mathematical Analysis,accept.
2.Ma Li, Tang De*. Dynamical behavior of a three-species diffusion-advection predator- prey-mutualist model in heterogeneous environments. J. Differential Equations, 2025, 424, 330–380.
3.Ma Li, Tang De, Tong Lulu*. Dynamics of a diffusive two-predator-one-prey model in advective heterogeneous environments. Phys. D, 2025, 481, Paper No. 134867, 10 pp.
4.Tang De, Wang Zhi-An*. Coexistence of heterogeneous predator-prey systems with prey- dependent dispersal. J. Differential Equations, 2024, 409, 461–497.
5.Ge Qing, Tang De*. Global dynamics of two-species Lotka-Volterra competition- diffusion- advection system with general carrying capacities and intrinsic growth rates. J. Dynam. Differential Equations, 2024, 36(2), 1905–1926.
6. Tang De, Chen Yuming*. A two-species diffusion-advection competition model with protection zones. J. Differential Equations, 2024, 405, 1–35.
7.Ma Li, Tang De*. A diffusion-advection predator-prey model with a protection zone. J. Differential Equations, 2023, 375, 304–347.
8.Tang De, Wang Zhi-An*. Population dynamics with resource-dependent dispersal: single- and two-species models. Journal of Mathematical Biology, 2023, 86:23.
9. Ge qing, Tang De*. Global dynamics of a two-species Lotka-Volterra competition-diffusion-advection system with general carrying capacities and intrinsic growth rates II: Different diffusion and advection rates. Journal of Differential Equations, 2023, 344: 735-766.
10. Tang De, Chen Yuming*. Predator-prey systems in open advective heterogeneous environments with Holling-Tanner interaction term. Journal of Differential Equations, 2022, 334: 280-308.
11.Tang De,Chen Yuming*. Global dynamics of a Lotka-Volterra competition-diffusion system in advective heterogeneous environments. SIAM Journal on Applied Dynamical Systems, 2021, 20(3) : 1232–1252.
12.Zhou Peng, Tang De, Xiao Dongmei*. On Lotka-Volterra competitive parabolic systems: exclusion, coexistence and bistability. Journal of Differential Equations, 2021, 282: 596– 625.
13.Tang De, Chen, Yuming*. Global dynamics of a Lotka-Volterra competition-diffusion system in advective homogeneous environments.Journal of Differential Equations, 2020, 269(2): 1465–1483.
14.Tang De,Zhou Peng*. On a Lotka-Volterra competition-diffusion-advection system: homogeneity vs heterogeneity. Journal of Differential Equations, 2020, 268(4): 1570–1599.
15. Xu Fangfang, Gan Wenzhen, Tang De*. Global dynamics of a Lotka-Volterra competitive system from river ecology: general boundary conditions. Nonlinearity, 2020, 33(4): 1528–1541.

