教育经历:
2012.9-2017.6 数学专业理学博士 湖南大学 导师:桂长峰教授
2008.9-2012.6 数学与应用数学理学学士 湖南大学
工作经历:
2017.7-2017.12 特聘副研究员 中山大学数学学院(珠海)
2018.1-2020.6 博士后 中山大学数学学院(珠海) 合作导师:赵育林教授
2020.7-2021.9 特聘副研究员 中山大学数学学院(珠海)
2021.10至今 副教授 中山大学数学学院(珠海)
联系方式:
邮箱:tangd7@mail.sysu.edu.cn
研究方向:
微分方程、动力系统、生物数学
科研项目:
国家自然科学基金青年项目,空间生态学中若干反应扩散方程模型的定性研、2020.1-2022.12、主持
博士后面上资助,若干两物种反应扩散对流模型种群动力学行为的定性研究、2019.1-2020.12、主持
中央高校基本业务费青年培训项目,几类反应扩散方程(组)动力学行为的定性研究 、2019.1-2021.12、主持
广州市科技计划项目 ,具有空间结构的反应扩散模型解的长时间动力学性态、2021.4.1-2023.3.31、主持
广东省自然科学基金面上项目,若干反应扩散方程模型的对流机制,2023.1.1-2025.12.31、主持
论文发表(接收待发表):
[1] D. Tang, Z.-A. Wang. Population dynamics with resource-dependent dispersal: single- and two-species models. Journal of Mathematical Biology, accept.
[2] D. Tang, Y. Chen*. Predator-prey systems in open advective heterogeneous environments with Holling-Tanner interaction term. Journal of Differential Equations, 334 (2022), 280-308.
[3] Q. Ge, D. Tang*. Global dynamics of two-species Lotka-Volterra competition-diffffusion-advection system with general carrying capacities and intrinsic growth rates*. Journal of Dynamics and Differential Equations, (2022), 10.1007/s10884-022-10186-7.
[4] Q. Ge; D. Tang*; Global dynamics of a two-species Lotka-Volterra competition-diffusion-advection system with general carrying capacities and intrinsic growth rates II: Different diffusion and advection rates, Journal of Differential Equations, 334 (2023), 735-766.
[5] D. Tang, Y. Chen*. Global dynamics of a Lotka-Volterra competition-diffusion system in advective heterogeneous environments. SIAM Journal on Applied Dynamical Systems, 20 (2021), no.3, 1232–1252.
[6] P. Zhou, D. Tang, D.-M. Xiao. On Lotka-Volterra competitive parabolic systems: exclusion, coexistence and bistability. Journal of Differential Equations, 282 (2021), 596–625.
[7 F. Xu, W. Gan, D. Tang*. Global dynamics of a Lotka-Volterra competitive system from river ecology: general boundary conditions. Nonlinearity, 33 (2020), 1528-1541.
[8] D. Tang, Y. Chen*. Global dynamics of a Lotka-Volterra competition-diffusion system in advective homogeneous environments. Journal of Differential Equations, 269 (2020), 1465-1483.
[9] D. Tang, P. Zhou*. On a Lotka-Volterra competition-diffusion-advection system: Homogeneity vs heterogeneity. Journal of Differential Equations, 268 (2020), 1570–1599.
[10] L. Ma, D. Tang*. Evolution of dispersal in advective homogeneous environments. Discrete and Continuous Dynamical Systems, 40 (2020), 5815-5830.